
Solutions by Thomas Breydo (thomasbreydo.com).

Your Journey Begins Here
This was meant to be an introductory problem. We made explanatory videos
that show you how to use Hackerrank and solve this problem:

• https://youtu.be/TRUKo-oeR44 (uses Java)
• https://youtu.be/ezZ62SzsXqo (uses Python)
• https://youtu.be/YrXuhwnfYUY (uses JavaScript)

What to Bring on Vacation
This was also meant to be an introductory problem and we made explanatory
videos for it as well:

• https://youtu.be/90-RDs7IiWk (uses Java)
• https://youtu.be/XJT9RuhjG-I (uses Python)
• https://youtu.be/rlvyOQxwpsE (uses JavaScript)

Largest Perfect Square
Method 1
We can loop over all numbers k between 0 and n, stopping as soon as

(k + 1)2 > n.

At this point, k2 will be the largest perfect square less than or equal to n, since
(k + 1)2 is larger than n. It can be shown that this method runs in O(

√
n) time.

This is fast enough given our constraints for n.

Method 2
We can avoid any loops by noticing that, at the end of the previous solution, we
always have

k = b
√

nc.

As with the previous solution, the largest perfect square less than or equal to n
will be

k2 = b
√

nc2.

1

https://www.thomasbreydo.com
https://youtu.be/TRUKo-oeR44
https://youtu.be/ezZ62SzsXqo
https://youtu.be/YrXuhwnfYUY
https://youtu.be/90-RDs7IiWk
https://youtu.be/XJT9RuhjG-I
https://youtu.be/rlvyOQxwpsE

This method runs in O(1) time, which is much better. Here is the Python
implementation:

def largestPerfectSquare(n):
return math.floor(math.sqrt(n)) ** 2

Here is the C++ implementation:

int largestPerfectSquare(int n) {
int k = floor(sqrt(n));
return k * k;

}

Money for a Vacay
We can compute the amount of money you have after the transactions as follows:

total =
∑

(transactions) + startBalance.

We then check if total < 1145 to see if we should return YES or NO.

Here is the Python implementation:

def enoughForVacation(startBalance, transactions):
return 'NO' if sum(transactions) + startBalance < 1145 else 'YES'

Here is the C++ implementation:

string enoughForVacation(int startBalance, vector<int> transactions) {
int total = startBalance;
for (int t : transactions) total += t;
return total >= 1145 ? "YES" : "NO";

}

Colorful Criminals
We can check each description in the log for one that matches desc. Here is the
Python implementation:

LETTER_TO_NAME = {"m": "Maxine", "t": "Tabitha", "r": "Ryan"}

def findKiller(log, desc):
killer_wearing = desc.split()
for line in log:

first_letter, *wearing = line.split("-")
if wearing == killer_wearing:

return LETTER_TO_NAME[first_letter]

2

Donna’s Function
A naive recursive approach such as the following would take too long:

def D(n):
if n == 1:

return 3
if n == 2:

return 9
return D(n - 1) - D(n - 2)

Thankfully, the values for D(n) cycle every 6 values of n:

• n = 1⇒ D(n) = 3
• n = 2⇒ D(n) = 9
• n = 3⇒ D(n) = 6
• n = 4⇒ D(n) = −3
• n = 5⇒ D(n) = −9
• n = 6⇒ D(n) = −6
• n = 7⇒ D(n) = 3 (start of a new cycle)
• n = 8⇒ D(n) = 9
• n = 9⇒ D(n) = 6 . . .

We can use this to write the following O(1) solution:

def D(n):
answers = [3, 9, 6, -3, -9, -6]
return answers[(n - 1) % 6]

Float Over the Mountains
(Solution by Adam Boesky.)

After getting past the scientific terminology, this problem becomes fairly basic
implementation. Because energy is only gained or lost when we change altitudes,
we can loop through the altitudes and calculate the energy that is gained or lost
for each change in altitude and calculate the sum. The routine for calculating
the energy is as follows.

Let the altitude before the transfer be A1 and the altitude after be A2. The first
step is to calculate the change in temperature

∆T (A1, A2) = (T0 − CA2)− (T0 − CA1).

where C is the temperature lapse rate = 0.0065 and T0 is the temperature at
sea level = 288.15. The Python implementation of this is as follows:

def calculate_d_T(alt, next_alt):
T_alt = 288.15 - (0.0065 * alt)

3

T_next_alt = 288.15 - (0.0065 * next_alt)
return T_next_alt - T_alt

Then, we must calculate the heat energy transfer which is simply calculated as

q = mc∆T

where m is mass of the air inside the balloon = 2686.2 and c is the specific heat
of the air = 0.717. The Python implementation of this is as follows:

def calculate_d_E(d_T):
return (2686.2 * 0.717 * d_T)

Finally, we calculate the amount of energy gained or lost as a function of the
heat energy transfer which incorporates the heating and cooling efficiency. If we
are heating the balloon, the energy E = q ÷ 0.95. If we are cooling the balloon,
the energy E = q × 0.25. We then add this value to the total energy.

Using the functions above, the Python implementation of this is:

def calculateEnergy(d_alts):
alt = 300 + d_alts[0] # Initial altitude
E_tot = 0 # Energy
for i in range(1, len(d_alts)):

next_alt = 300 + d_alts[i] # Next altitude
d_T = calculate_d_T(alt, next_alt) # Change in temp
d_E = calculate_d_E(d_T) # Heat energy transferred
if d_E >= 0: # Add the energy transferred taking efficiency into account

E_tot = E_tot + (d_E / 0.95)
else:

E_tot = E_tot + (d_E * 0.25)
alt = next_alt

return E_tot

Zip away to Zurich
A clever trick to solve this problem is to note that the answer is equal to the
XOR sum of all sold tickets. This is because

a⊕ a⊕ b⊕ b⊕ · · · ⊕ y ⊕ y ⊕ z = z.

(In other words, all duplicate tickets cancel with themselves when XOR-ed.) As
such, taking the XOR sum all numbers is equivalent to finding the number that
appears only once.

Here is the implementation in Python:

4

https://en.wikipedia.org/wiki/Exclusive_or

def availableTicket(soldTickets):
return functools.reduce(lambda x, y: x ˆ y, soldTickets)

Here is the implementation in C++:

int availableTicket(vector<int> soldTickets) {
int ans = 0;
for (int x : soldTickets) ans ˆ= x;
return ans;

}

The Bishop’s Walk
The idea is that we can simulate moving the bishop in each of the four diagonal
directions until it reaches an obstacle or an edge, keeping track of the total
number of squares it can visit as we go.

Here is the implementation in Python:

def valid(pos, n):
return n >= pos[0] >= 1 and n >= pos[1] >= 1

def moveCount(n, k, r_b, c_b, obstacles):
occupied = set((row, col) for row, col in obstacles)
moves = [(-1, -1), (-1, 1), (1, -1), (1, 1)]
ans = 0
for move in moves:

cur = [r_b, c_b]
while True:

cur[0] += move[0]
cur[1] += move[1]
if not valid(cur, n) or tuple(cur) in occupied:

break
ans += 1

return ans

Here is the implementation in C++:

bool valid(pi& pos, int n) {
return pos.first >= 1 && pos.first <= n && pos.second >= 1 && pos.second <= n;

}

int moveCount(int n, int k, int r_b, int c_b, vector<vector<int>> pieces) {
vpi moves = {{-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
set<pi> occupied;
for (int i = 0; i < pieces.size(); ++i) {

occupied.insert({pieces[i][0], pieces[i][1]});
}

5

int ans = 0;
for (pi move : moves) {

pi cur = {r_b, c_b};
while (true) {

cur.first += move.first;
cur.second += move.second;
if (!valid(cur, n) || occupied.count(cur) != 0) break;
++ans;

}
}
return ans;

}

Plates of Hash (Browns): Part I
We can simulate each step of the hashing process as specified in the problem
statement. Here is the implementation in Python:

def hashPlate(plate, key):
return key[int(

''.join([c if c.isnumeric() else str(ord(c)) for c in plate])
) % len(key)]

Plates of Hash (Browns): Part II
Each character can be one of 36 options (26 letters and 10 digits). Since we
only consider four-character plates, we can brute force the answer by checking
all 364 plates with our hashPlate function from Part I. Here is the Python
implementation:

def hashPlate(plate, key):
return key[int(

''.join([c if c.isnumeric() else str(ord(c)) for c in plate])
) % len(key)]

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

def numberOfPlates(key, c):
ans = 0
for c1 in ALPHABET:

for c2 in ALPHABET:
for c3 in ALPHABET:

for c4 in ALPHABET:
if hashPlate(c1 + c2 + c3 + c4, key) == c:

ans += 1

6

return ans

Note, Python’s itertools can simplify our quadruple four-loop:

import itertools

def hashPlate(plate, key):
return key[int(

''.join([c if c.isnumeric() else str(ord(c)) for c in plate])
) % len(key)]

ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

def numberOfPlates(key, c):
ans = 0
for c1, c2, c3, c4 in itertools.product(ALPHABET, repeat=4):

if hashPlate(c1 + c2 + c3 + c4, key) == c:
ans += 1

return ans

Rudolph the Red-Nosed Reindeer
For all 0 ≤ i < n, let ai = reindeerIntervals[i], the interval at which the
ith reindeer arrives. Then, the ith reindeer arrives at timestamps that are 0
(mod ai). For example, if a13 = 5, then the 13th reindeer arrives at timestamps
that are 0 (mod 5), which are 0, 5, 10, 15, and so on.

For t to be valid, the ith reindeer must arrive at time t + i, so

t + i ≡ 0 (mod ai)

for all 0 ≤ i < n. This problem reduces to finding the smallest t that satisfies
these n modular constraints.

We can satisfy the n conditions by satisfying the largest, then the second largest,
and so on, until we have satisfied the smallest.

1. Set t := 0.

2. Increment t by 1 until t + j ≡ 0 (mod aj), where aj is the largest ai.

3. We have now satisfied the constraint when i = j.

4. From here, we increment t by aj so that we don’t lose t + j ≡ 0 (mod aj).
Continue incrementing until t + k ≡ 0 (mod ak), where ak is the second-
largest ai

5. We have now satisfied the constraint when i = j and the constraint when
i = k was maintained.

7

6. From here, we increment t by

lcm(aj , ak)

so that we don’t lose t + j ≡ 0 (mod aj) nor t + k ≡ 0 (mod ak). (This is
the key speed-up: we don’t need to try any numbers that we know won’t
satisfy any of the constraints we have already satisfied.)

7. With each new constraint we satisfy, we start to increment t by
lcm(aj , ak, . . . , ax) to avoid messing up the constraints we have already
satisfied (namely, aj , ak, . . . , and ax). We move on to the next-largest
constraint.

Here’s the implementation in Python:

def findTimestamp(reindeerTimes):
a = [(i, a_i) for i, a_i in enumerate(reindeerTimes)]
Sort in increasing order because pop() will take from the end
a.sort(key=lambda x: x[1])
incr = 1
t = 0
while a:

i, a_i = a.pop()
while (t + i) % a_i != 0:

t += incr
incr = lcm(incr, a_i)

return t

def lcm(a, b):
c = math.gcd(a, b)
return a * b // c

8

	Your Journey Begins Here
	What to Bring on Vacation
	Largest Perfect Square
	Method 1
	Method 2

	Money for a Vacay
	Colorful Criminals
	Donna's Function
	Float Over the Mountains
	Zip away to Zurich
	The Bishop's Walk
	Plates of Hash (Browns): Part I
	Plates of Hash (Browns): Part II
	Rudolph the Red-Nosed Reindeer

